

ENVIRONMENTAL TECHNICAL SERVICES

AN ENVIRONMENTAL CONSULTING FIRM

2006 - 2007 ANNUAL REPORT DOCUMENTING THE IMPLEMENTATION OF THE OPERATIONS AND MAINTENANCE PLAN

FORMER HECKATHORN NPL SITE

Located At The

LEVIN-RICHMOND TERMINAL CORPORATION 402 WRIGHT AVENUE RICHMOND, CALIFORNIA

July 2007

ENVIRONMENTAL TECHNICAL SERVICES

AN ENVIRONMENTAL CONSULTING FIRM

(800) 200-4ETS

2006 - 2007 ANNUAL REPORT DOCUMENTING THE IMPLEMENTATION OF THE OPERATIONS AND MAINTENANCE PLAN

FORMER HECKATHORN NPL SITE

Located At The

LEVIN-RICHMOND TERMINAL CORPORATION
402 WRIGHT AVENUE
RICHMOND, CALIFORNIA

Garv M. Leviff

Levin Richmond Terminal

Date

August 14, 2007

Lugust 10,2007 Date

Helen Mawhinney

Environmental Technical Services

Levin-Richmond Terminal Corporation

402 Wright Avenue, Richmond, California 94804 Direct Tel: (510) 307-4020 / Fax: (510) 236-0129 Cell Phone: (510) 703-6990 e-mail: jimc@levinterminal.com

9/25/2007

Sharon Lin, P.E. Remedial Project Manager EPA Region 9 Superfund Division 75 Hawthorne Street (SFD-7-1) San Francisco, CA 94105

Dear Sharon,

Gary Levin asked me to send this to you. He apologizes for the delay in getting this to you. When we receive the other copies, one will be sent to Julia Spahn.

If you have any questions or comments, please contact Gary or me. I hope to see you on the 4th of October at your office.

Best regards,

Jim Cannon

TABLE OF CONTENTS

1.0	INTRO	DDUCTION
*	1.1	Background
	1.2	Current Site Use
2.0	CAP	AND STORM WATER INTERCEPTORS
	2.1	Description of Capping System Concrete Cap Geotextile Fabric and Gravel Cover Stormwater Collection
	2.2	Inspection of Cap
	2.3	Inspection of Drop Inlets and Interceptors
	2.4	Purging and Cleaning of the Storm Drains
	2.5	Analyses
. 3.0		NG OF STORM WATER INTERCEPTORS QUENT TO RAINFALL
4.0	BETT	ER BUSINESS PRACTICES / GOOD HOUSE KEEPING
	4.1	Street Sweeper
	4.2	Water Truck
	4.3	Vacuum Truck
	4.4	Brooms
	4.5	Hay Bales / Swaddles
	4.6	Absorbent Materials
	4.7	Interceptor Improvements
		SW-1 SW-2 SW-3 through SW-7 Parr Yard – SW-8, SW-9, SW-10 General Maintenance and Storm Water Improvements

TABLE OF CONTENTS

- 4.8 Training
- 4.9 Marine Spill Emergency Response
- 4.10 Inspections

5.0 SUMMARY

Table 1 Composite Water Sample Stormwater Interceptors SW-3 through SW-7 November 15, 2006

Table 2
Composite Water Sample
Stormwater Interceptors SW-3 through SW-7
February 27, 2007

Table 3
Composite Water Sample
Stormwater Interceptors SW-3 through SW-7
June 28, 2007

APPENDICES

APPENDIX A TABLES

APPENDIX B
LABORATORY ANALYTICAL REPORTS &
CHAIN OF CUSTODIES
November 15, 2006
February 27, 2007
June 28, 2007

APPENDIX C BUSTER BUILDING, GENERAL CONTRACTOR, CAP INSPECTION JUNE 29, 2007

APPENDIX D FIGURES

1.0 INTRODUCTION

This document is prepared for submittal to the United States Environmental Protection Agency (U.S. EPA), Hazardous Waste Management Division. Levin-Richmond Terminal Corporation (LRTC), in compliance with the State of California General Stormwater Permit for Discharges of Storm Water Associated with Industrial Activities (General Permit), has performed activities that are included in its Storm Water Monitoring Plan (SWMP). The SWMP also provides the basis for the evaluation of compliance with the General Permit and Storm Water Pollution Prevention Plan (SWPPP). The combination of the SWMP and the SWPPP comprise the storm water monitoring and pollution prevention plans for the entire 40-acre site and the facilities owned and operated by LRTC.

As required by the U.S. EPA Consent Decree, dated April 22, 1996 and the completed Upland Cap Installation, Former United Heckathorn Facility, Richmond, California, the Operations and Maintenance Plan (O & M Plan) describes the procedures for the long-term management of the upland capping system at the 4.5-acre Heckathorn NPL Site. The results of inspections, monitoring, and maintenance of the cap and drainage system are documented within this Annual Report. The upland remedy implemented by LRTC and Levin Enterprises Inc. was approved on September 30, 1999. There were no activities to report for the period ending June 2001 and LRTC began annual reporting for its fiscal year commencing July 1, 2001 through June 30, 2002. Submittal of Annual Reports is made for the reporting periods ending June 30 of each year. All referenced reports and documents are available at LRTC and are available to the U.S. EPA and its contractors upon request.

This document presents the June 2007 summary of recent inspection and maintenance by LRTC of the cap and associated storm water interceptors.

1.1 Background

Environmental Technical Services (ETS) prepared and caused to be filed, on behalf of LRTC, the 2006-2007 Annual Report for Storm Water Discharges Associated with Industrial Activities, for the period ending June 2007. During the 2006 – 2007 reporting period no changes have been made to the Heckathorn NPL Site, including but not limited to material processes, capping, interceptors, and site construction. Site observations, monitoring, and "Good Housekeeping Practices" are performed on a daily basis.

1.2 Current Site Use

The Levin-Richmond Terminal Corporation operates a dry-bulk marine terminal encompassing approximately 40 acres. LRTC's activities include covered and uncovered storage of cargo materials such as metallurgical coke, petroleum coke, coal, sand, granulated blast furnace slag, and bauxite. The bulk cargo is stockpiled onsite and loaded onto vessels, rail and trucks; or unloaded from vessels onto rail cars and

trucks. The capped section of the former Heckathorn Site is used for stockpiling cargo and railroad operations.

2.0 CAP AND STORM WATER INTERCEPTORS

2.1 Description of Capping System

Concrete Cap

The concrete cap is located in the upland area location of the former United Heckathorn Facility. The concrete cap consists of a minimum of six inches of concrete aggregates with reinforcing steel wire. The reinforcing steel consists of a double layer of 6' by 6' W4.5 X W4.5 steel-welded wire fabric (WWF). In some areas the cap overlies asphalt. In the other areas where asphalt does not exist, the cap overlies a double layer of 4-inch by 4-inch W4.5 X W4.5 WWF upon a compacted grade. In these areas the subgrade was prepared and compacted according to the specification approved by the U.S. EPA.

Geotextile Fabric and Gravel Cover

Some areas of the upland cap adjacent to railroad tracks and switches, where the storage and handling of bulk materials does not occur, were covered with a geotextile fabric and gravel. These areas consist of soils potentially containing pesticides. The geotextile membrane and six-inches of clean imported gravel cover these soils.

Stormwater Collection

The cap contains a storm water collection system with five large interceptors (retention basins) engineered and constructed according to the specification approved by the U.S. EPA. The interceptors are identified as SW-3 through SW-7.

2.2 Inspection of Cap

The concrete cap was inspected by John Peterson for Buster Building, General Contractor, License No. 513203 C8 (concrete), on June 29, 2007, and found to be intact and in good condition. Also, the cap was inspected quarterly by Environmental Technical Services (ETS) while performing stormwater and "Good Housekeeping" observations. The cap was found to be uncompromised with only occasional surface "feather" cracks typical of those which develop subsequent to the curing of freshly poured concrete. The cracks are insignificant and not indicative of stress fractures. These surface cracks are too small to repair. Refer to Attachment B for the Buster Building, General Contractor, Report of Cap Inspection, June 29, 2007.

2.3 Inspection of Drop Inlets and Interceptors

Visual observations of storm water runoff and storm water systems are performed on an as-needed basis during shipping activities, periods of significant rainfall, and during dry and wet seasons. Work areas and surface conditions are inspected on a daily basis and the entire site is cleaned using LRTC's power vacuums and sweeper brooms as part of LRTC's routine housekeeping. Site surfaces are kept clean to ensure that sediment and contaminants do not enter nearby surface waters.

LRTC's staff and Environmental Technical Services (ETS) perform site observations. ETS has been retained to perform random site inspections and to advise LRTC as to effective pollution prevention improvements. American Textiles, a pollution absorbent/prevention materials expert and vendor, performs site inspections during the wet season to evaluate the condition and placement of absorbent snakes, socks, pads, and fabrics.

LRTC's Storm Water Pollution Prevention Plan includes the inspection and documentation of drop inlet and interceptor conditions each quarter, each dry season, and annually. Monthly inspections are required during the wet season. LRTC and ETS have elected to document all inspection results on a monthly basis. The results are included in the Annual Report for Storm Water Discharges Associated with Industrial Activities

2.4 Purging and Cleaning of the Storm Drains

Plans for the annual cleaning of five storm water interceptors were developed by LRTC's personnel with Environmental Technical Services in June 2003. Storm drain cleaning was increased to several times throughout the year beginning in June 2005 and remains an active part of LRTC's SWPPP. The interceptors are emptied on an-as-needed-basis to eliminate storm water discharge.

Composite water samples were collected from interceptors SW-3 through SW-7 on November 15, 2006, February 27, 2007, and June 28, 2007 (designated as No. LRTO SW-3 through SW-7).

Composite sampling was accomplished by lowering a clean sample bottle into standing water within the last chamber. The bottle was allowed to fill with storm water, which was then decanted into appropriately preserved sample bottles. Three discrete, 40-ml, Volatile Organics Analysis bottles were filled from each interceptor, to be composited by a State certified analytical laboratory as one sample for analysis. Storm water samples for all other analyses were composited during field sampling. This was accomplished by collecting equal amounts of water from each interceptor within a clean 2.5 gallon Teflon container. Upon completion this water was then decanted into sample bottles.

Each sample bottle was labeled with LRTO as the project name, storm water system identification number, sampler's name, date, time and preservative. The samples were placed within a cooler on ice, and transported to a Entech Analytical Labs, Certificate No. 52486 under chain of custody, within the sample's holding time.

2.5 Analyses

The composite water samples were analyzed as requested by the City of Richmond, Waste Water Division in order to obtain approval for discharge storm water into the City of Richmond's sanitary sewer system.

All composite storm water samples were analyzed for oil and grease (O&G, using EPA Method E1664A) or total oil and grease (TOG, using EPA Method 418.1); benzene, toluene, ethylbenzene, total xylenes, (BTEX, using EPA Method Modified 8260B); specific conductance (SC, using EPA Method 120.1); pH (using HYDAC pH meter); copper, lead, nickel, and zinc (Cu, Pb, Ni, Zn, using EPA Method 200.7); biological oxygen demand (BOD, using EPA Method SM5210B); and total suspended solids (TSS, using EPA Method 160.2).

Certified clean, properly preserved bottles were supplied by a state certified analytical laboratory. The bottles were stored in sealed plastic bags and then placed within tightly sealed containers to prevent contamination. Tony Lester of LRTC collected the storm water samples under the supervision of ETS. Mr. Lester was trained in proper sample collection, storage, and maintenance of clean sample containers and equipment. A clean glass, sampling device was used for each storm water drain. Disposable latex gloves were changed when an unclean surface was encountered and between samples. Headspace was eliminated in sample bottles and appropriate preservatives used.

Following receipt, the laboratory analytical results were presented to the City of Richmond Waste Water Division, Pretreatment Program, to determine whether the water removed from the storm water interceptors could be discharged into the sanitary sewer. Upon approval, the City of Richmond inspected the storm drains and sanitary sewer, and discharge was approved under LRTC's Industrial Discharge Permit. The Waste Water Division was notified 48-hours prior to each project start to allow for city inspection.

LRTC's OSHA certified personnel emptied and cleaned interceptors SW-3 through SW-7 under a site-specific Health and Safety Plan. LRTC pumped water from the interceptors utilizing a specially equipped water truck. Water was discharged from the water truck directly into the sanitary sewer. Sediment was removed from the interceptors using storm water to liquefy the sediment, which was then pumped into the vacuum truck. Sediment was released from the truck into a concrete pit away from the

drop inlets where it was allowed to dry, tested, and then disposed of at a qualified landfill. Subsequent to emptying, each interceptor's floor and sidewalls were pressure-washed. This process was repeated until all sediment had been removed and the cleaning of each interceptor complete.

3.0 SAMPLING OF STORM WATER INTERCEPTORS SUBSEQUENT TO RAINFALL

Rainfall did not occur through June 30, 2007 in quantities sufficient to create an outpour of storm water from interceptors SW-3 through SW-7. LRTC's personnel were able to empty all storm water and sediment from each interceptor prior to fall rainfall allowing LRTC to enter the rainy season with dry interceptors. The practice of emptying interceptors SW-3 through SW-7 several times throughout the rainy season allowed LRTC to avoid storm water discharge into the Lauritzen Channel. Pumping and discharge of storm water into the City of Richmond's sanitary system is scheduled to be repeated prior to every wet season and during seasonal rainfall.

4.0 BETTER BUSINESS PRACTICES / GOOD HOUSE KEEPING

Levin-Richmond Terminal Corporation continuous to work closely with Environmental Technical Services to improving and upgrade each site process that could adversely impact the environment. Improvements are not limited to but include the following:

4.1 Street Sweeper

In 2001 LRTC purchased an in-house Tennant vacuum power sweeper, which perform daily sweeping of outside surface areas, and site cleanup following the loading and unloading of ships. The sweeper is also positioned and manned during appropriate cargo operations. The sweeper is maintained by LRTC's employees and Tennant's service technicians.

A second vacuum power Sentinel sweeper manufactured by Tennant was purchased by LRTC and working onsite by January 1, 2004. The sweeper is maintained by Tenant under a full-service maintenance contract.

4.2 Water Truck

An LRTC water truck has been converted to pump and contain water from interceptors SW-3 through SW-7 prior to permitted discharge into the sanitary sewer. This prevents the storm water within interceptors SW-3 through SW-7 from reaching levels that outflow into the Lauritzen Channel.

4.3 Vacuum Truck

An LRTC vacuum truck has been converted to pump and contain sediments from drain inlets and interceptors.

4.4 Brooms

LRTC operates two (2) IT-28 tractors with broom attachments to perform clean up of the capped surface following cargo operations.

4.5 Hay Bales / Swaddles

Hay bales or swaddles are placed around the entirety of each interceptor and storm water drain. During cargo handling operations the storm drain inflows within the work area are covered with Extech (a hydrocarbon, metal, sediment resistant fabric), and hay bales. Interceptor SW-3, located near the hopper building, is covered with plastic when the hopper is in use to prevent the dropping of material from the hopper conveyors onto the interceptor. The steel plate covering interceptor SW-7 has a tight seal. Therefore, it is doubtful material would enter the basin; however, covering the interceptor is an added precaution.

A daily inspection is conducted by LRTC's operations supervisors of all working stockpiles, mobile equipment, and conveying equipment, for containment and cleanliness to eliminate the buildup of material on jackwalls, equipment, roadways, and surfaces. Small spills are given the same attention as large spills.

Cargo stockpiles are stored away from surface waters, drains, and storm water inlets. Concrete jack-walls and k-rail are placed around stockpiles for containment.

4.6 Absorbent Materials

American Textile was retained to direct the placement of appropriate absorbent snakes, socks, pillows, and filters, around and within each interceptor and storm drain inlet. The absorbent materials are photosensitive and have a limited life span. Each absorbent type is closely monitored and replaced according to the manufacturer's suggested replacement schedule. The absorbent materials are white allowing easy detection of saturation with waste.

Clean-up stations have been placed strategically throughout the site in close proximity to areas where potential contaminants are used or stored, and within each work vehicle.

These materials are stored in foil factory-sealed bags to maintain their integrity. Ample supplies of absorbents are stored at LRTC.

A Dock Emergency Response Station has been established to efficiently organize access to adequate cleanup supplies.

Exposed soil and ties beneath railroad car "parking stations" are covered with "Trackmat", an absorbent fabric barrier, prescribed and provided by American Textiles. This material is scheduled for routine replacement according to the manufacturer's suggested replacement schedule.

American Textiles inspects LRTC's absorbent supply and placement at the beginning of each wet season, then instructs as to effective changes in material, quantity, or placement, which could increase filtration efficiency.

Throughout the wet season hay bales and absorbents surround each drain inlet. Drain Guards have been placed within all drain inlets located on the former Heckathorn facility parcel. Each inlet is sealed with plastic and/or Extech fabric.

Storm water runoff must flow through fabrics and absorbents prior to entering the storm water interceptor or drain outflow. Additional hay bales, sediment pillows, and absorbent materials were added to this area during the wet season's loading and unloading activities.

During the dry season interceptors were sealed by pressing hay bales, absorbents, and Extech fabric tight against each system's inflow. Inflow grates flush with grade are sealed with plastic sheeting. Where traffic allows each grate is covered with, and surrounded by, hay bales.

4.7 Interceptor Improvements

SW-1

All basins and the primary interceptor associated with storm water system SW-1 were emptied and cleaned during the 2006 - 2007 reporting year to minimize contaminants.

In 2004, the storm water collection trench, which flowed to monitoring point SW-1, was upgraded by sealing the trench surface with asphaltic concrete. The trench was excavated at seven locations and sump basins constructed to allow the settling of sediments onto the basin floors. Surface cleanout grates were installed at grade. The storm drain interceptor system was thoroughly cleaned and upgraded with four new baffles, five compartments, and covered with steel plates.

Begging in 2006 Extech fabric was placed within each drain inlet. To decrease the entry of the three largest inlets and allow complete fabric coverage steel inserts were

constructed and placed within the drain entry. New hay bales were continually placed along the perimeter of each drain inlet. Additional absorbents were placed within the last interceptor compartment.

An Ultraguard Sock was placed over the interceptor's inflow and outflow pipes to decrease suspended solids.

Wright Avenue was bermed at a low point, and the curbing at the property line was improved. Additional berming was added to all equipment and storage areas.

To prevent dust and debris from entering storm drains during the dry season, all associated openings were sealed using plastic, hay bales, and/or Extech fabric. Storm water pollution prevention materials remain in place throughout the year should off-season rainfall occur.

All basins and the primary interceptor associated with storm water system SW-1 were emptied and cleaned during the 2006-2007 reporting year to assist in decreasing contaminants

SW-2

Interceptor SW-2 was upgraded to an aboveground interceptor in 2001, and constructed with three-tiered baffled chambers to allow the settling of sediments into the chamber floor.

In 2002, a concrete berm with a small opening was constructed around the interceptor's perimeter. Hay bales and absorbents surround this opening, creating a filtration system. Storm water runoff must flow through the opening prior to entering a second filtration system surrounding the interceptor's inflow.

Additional hay bales, swaddles, sediment pillows, and absorbents are added to this area during loading and unloading operations occurring in the wet season in order to collect sediment prior to entering the interceptor.

An Ultraguard Sock was placed on the cane pipe, which transports water from the second to the third and final chamber, to collect suspended solids and decrease contaminants before storm water discharges into the bay.

All basins and the primary interceptor associated with storm water system SW-2 were emptied and cleaned during the 2006 - 2007 reporting year. Absorbents were replaced within each system's inlet(s). Also, inlets were covered with plastic sheeting and/or hay bales during site operations.

All associated openings are sealed using plastic, hay bales, and/or Extech fabric during the dry season to keep interceptors clean. Pollution prevention materials remain in place throughout the year.

In 2006, a steel, quick release door was constructed at the drain entry to SW-2 allowing immediate closure by sealing the interceptor in the event of a non-storm water release.

SW-3 through SW-7

These storm water systems did not have outflow during the two rainfall sampling events and therefore were not sampled for annual storm water reporting. However, composite water samples were collected from interceptors SW-3 through SW-7 for the purpose of emptying and cleaning each interceptor. Laboratory analytical results were presented to the City of Richmond Waste Water Division, Pretreatment Program, and the interceptor's collected storm water was emptied into the city's sanitary sewer under LRTC's City Industrial Discharge Permit.

All basins and the primary interceptors associated with stormwater systems SW-3 through SW-7 were emptied and cleaned multiple times during the 2006 – 2007 reporting year. These interceptors are scheduled to be emptied and cleaned several times throughout the year as part of LRTC's SWPPP. Also, the interceptors are emptied on an-as-needed-basis to eliminate stormwater discharge into the bay.

Absorbents were routinely replaced within each system's inlet(s). Inlets were also covered with plastic sheeting; Extech fabric; and/or hay bales during site operations. All associated openings are sealed using plastic; hay bales; and/or Extech fabric during the dry season to keep interceptors clean. Pollution prevention materials remained in place throughout the year.

Parr Yard - SW-8, SW-9, SW-10

Drop inlets SW-8, SW-9, and SW-10 were located in the west Parr Yard and have historically been included in LRT's storm water monitoring program.

Beginning in 2006 Interceptor's SW-8 and SW-9 were removed by Eagle Rock Aggregates as a part of its construction project and the entire west Parr site was demolished and replaced with a modern distribution terminal for concrete aggregates. This site was maintained under the supervision of the City of Richmond's building inspection department. In approximately June 2007 Eagle Rock Aggregated installed a Jensen Precast® stormwater system which discharges into the City of Richmond's storm water drainage system. Commencing July 1, 2007 Eagle Rock Aggregates will be responsible for its monitoring and reporting.

In 2002, SW-10 was upgraded with an interceptor, constructed with three-tiered chambers, to allow the settling of sediments onto the chamber floor.

During construction Eagle Rock Aggregates removed asphalt/concrete in the area of LRTC's stormwater system SW-10 causing rainfall to be absorbed by exposed soil and eliminating stormwater runoff. Following resurfacing with asphalt/concrete LRT will continue regularly inspecting, cleaning, and monitoring SW-10 throughout the 2007-2008 stormwater season. During the dry season pollution prevention materials will be placed to seal the stormwater system.

General Maintenance and Storm Water Improvements

LRT maintains a log with various stormwater pollution prevention and site improvements documented. Included are sealing openings in jack walls; replacing SW-3 stormwater system piping for the placement of an Ultra Guard sock within; moving crane buckets to the covered north wall; constructing a drain grate on the Wright Avenue inlet to hold stormwater pollution prevention materials; vacuuming and cleaning out all drain inlets; tarping spare conveyor rollers and railroad ties; placing additional swaddles for silt trapping upstream of drain inlets; using "Soil Sement" to seal the surface of material stockpiles and preventing wind blown sediment from entering stormwater systems; the thorough cleaning of site surfaces, equipment, conveyors, dozer traps, and truck unloaders.

4.8 Training

LRTC's personnel working with potential contaminants are OSHA 40-hour Hazmat trained, with yearly eight-hour refresher courses. Qualified personnel are also spill-response trained.

On September 22 through 24, 2004, Bluewater & Associates conducted Hazardous Materials, Spill Emergency Response, Health and Safety, training at LRTC. Twenty-five LRTC employees completed certification. LRTC continues annual training and certification. Annual training and certification are an integral component of LRTC's best management plan.

Training included but was not limited to the following:

OSHA Hazardous Materials Standard
Recognizing hazardous materials
Hazardous materials basics, terms, and definitions
Hazardous communications (HMIS, NFPA, MSDS's, DOT and ERG)
Decontamination
Toxicology, PPE,

Confined space entry
Department of Transportation exercises
Spill control, containment, and cleanup
Emergency procedures, and ICS

Environmental Technical Services (ETS) instructed a stormwater pollution prevention course for all of LRTC's supervisors in January 2005. The course included: regulations, Best Business Management Practices, surface water sensitivity, spill prevention, spill response, good housekeeping, pollution prevention, sampling and analyses, benchmarks, and reporting.

LRTC's stormwater pollution prevention supervisor, Tony Lester, attended additional Blue Water and Associates, Inc. training, including the Qualified Individual Workshop, June 25 and 26, 2003: and the 2005 West Coast Spill Response School, April 19 through 21, 2005.

The 2005 West Coast Spill Response School Training included but was not limited to the following:

Site safety
Initial response and assessment actions
Maritime security concerns
Oil spill simulations
Boom design and strategy
Skimmer design and strategy
Alternate response options
Oiled wildlife cautions
Shoreline clean-up assessments (SCAT)
Decontamination
Spill impacts and cost concerns
Survey of response equipment staging area
Initial response strategies
Site protection strategy deployment

BlueWater performed a refresher HazWoper training course on November 29, 2006.

In 2007, Tony Lester continued ongoing stormwater pollution prevention and sampling training through Environmental Technical Services. Tony manages and trains a stormwater maintenance crew of four.

Stormwater pollution prevention and spill response protocol are routinely discussed at LRT staff meetings.

Levin Richmond Terminal Trained Stormwater Pollution Prevention, Spill Response Team:

Tony Lester
Jim Alexander
James Parks
Danny Flippen
James Sanchez

4.9 Marine Spill Emergency Response

LRTC maintains a verbal contract with Zaccor Companies Inc., an emergency response contractor, to respond to an LRTC marine spill, should one occur. Zaccor Companies provides 24-hour emergency response on both land and water.

This contract includes: providing emergency response vessels, personnel, absorbent consumables and Coast Guard approved oil containment boom.

The Coast Guard Marine Safety Office (MSO) requires that each visiting cargo vessel must have an existing OSRO with an emergency response contract prior to the Coast Guard allowing entry into US Ports.

4.10 Inspections

Daily inspections of all working stockpiles, mobile equipment, and conveying equipment are conducted by LRTC's supervisors and employees for containment and cleanliness to eliminate the buildup of material on jack walls, k-rail, equipment, roadways, and surfaces. Small spills are given the same attention as large spills.

LRTC staff and/or Environmental Technical Services (ETS) perform site observations. ETS has been retained to perform site inspections randomly and to advise LRTC as to effective pollution prevention improvements. Lou Butty, of American Textiles, a pollution absorbent/prevention materials expert and vendor, performs site inspections during the wet season to evaluate the condition and placement of absorbent snakes, socks, pads, and fabrics.

5.0 SUMMARY

The finding and results submitted in this document satisfy the requirements of the Operations and Maintenance Plan, as stipulated by the U.S. EPA Consent Decree for the completed Upland Cap Installation for the Former United Heckathorn Facility, Richmond, California.

APPENDIX A

TABLES

Table 1

Composite Water Sample Stormwater Interceptors SW-3 through SW-7 November 15, 2006

Date of Sample November 15, 2006 Person Collecting Sample: Tony Lester

Title:: LRT Project Manager

Note: Helen Mawhinney signing for Tony

Lester whose signature is on the C of C **Analytical Laboratory:**

Entech Analytical	Signa	ature: 1/4	N III	Willen war
Constituent	SW-3 through SW7	Detection Limit	Unit	EPA Method
Specific Conductance	1000	1.0	umhos/cm	E120.1
TSS	10	5.0	ppm	E160.2
Benzene	ND	0.5	ppb	5030C/8021B
Toluene	ND	0.5	ppb	5030C/8021B
Ethylbenzene	ND	0.5	ppb	5030C/8021B
Xylenes	ND	0.5	ppb	5030C/8021B
Oil and Grease	8.1	5.0	ppm	E1664A
Copper	0.16	0.005	ppm	E200.7
Lead	0.005	0.005	ppm	E200.7
Nickel	ND	0.005	ppm	E200.7
Zinc	0.054	0.010	ppm	E200.7
рН	7.4	6.0-9.0	STU	Hydac
Biological Oxygen Demand	ND	5.0	ppm	SM5210B
ND = Not Detected for TSS = Total Suspende				

Table 2 Composite Water Sample Stormwater Interceptors SW-3 through SW-7 February 27, 2007

Date of Sample: February 27, 2007

Person Collecting Sample: Tony Lester

Title: : LRT Project Manager

Note: Helen Mawhinney signing for Tony Lester

whose signature is on the C of C

Analytical Laboratory:

Entech Analytical Labs, Inc.

Constituent	SW-3 through SW7	Detection/ Limit	Unit	EPA Method
Specific Conductance	280	1.0	Umhos/cm	E120.1
TSS	27	5.0	ppm	E160.2
Benzene	ND	0.5	ppb	5030/8021
Toluene	ND	0.5	ppb	5030/8021
Ethylbenzene	ND	0.5	ppb	5030/8021
Xylenes	ND	0.5	ppb	5030/8021
Total Oil and Grease	ND	05.0	ppm	418.1
Copper	ND	0.005	ppm	E200.7
Lead	ND	0.005	ppm	E200.7
Nickel	ND	0.005	ppm	E200.7
Zinc	.ND	0.010	ppm	E200.7
pH	7.3	6.0-9.0	STU	Hydac
Biological Oxygen Demand	ND	5.0	ppm	SM5210B

TSS = Total Suspended Solids

ND = Not Detected for this constituent

Table 3

Composite Water Sample Stormwater Interceptors SW-3 through SW-7 June 28, 2007

Date of Sample: June 28, 2007 Person Collecting

Person Collecting Sample: Tony Lester

Title:: LRT Project Manager

Note: Helen Mawhinney signing for Tony

Lester whose signature is on the C of C

Analytical Laboratory: Entech Analytical

Constituent	SW-3 through SW7	Detection Limit	Unit	EPA Method
Specific Conductance	7100	1.0	Umhos/cm	E120.1
rss	7.3	1.0	ppb	SM2540D
Benzene	ND	0.5	ppb	5030B/8021B
Toluene	6.7	0.5	ppb	5030B/8021B
Ethylbenzene	ND	0.5	ppb	5030B/8021B
Xylenes	· ND	1.0	ppb	5030B/8021B
Oil and Grease	ND	0.5	ppb	E1664A
Copper	0.0076	0.0050	ppb	3010A
Lead	ND	0.0050	ppb	E200.7
Nickel	ND	0.0050	ppb	E200.7
Zinc	.0.022	0.010	ppb	E200.7
pH	7.9	6.0-9.0	pH Units	150.1
Biochemical Oxygen Demand	2.6	.05	ppm	SM5210B

TSS = Total Suspended Solids

APPENDIX B

LABORATORY ANALYTICAL REPORTS & CHAIN OF CUSTODIES

November 15, 2006 February 27, 2007 June 28, 2007 Laboratory Analytical Report November 15, 2006

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200

Fax: (408) 588-0201

Helen Mawhinney Lab Certificate Number: 52486

Issued: 11/17/2006 **Environmental Technical Services (ETS)**

1548 Jacob Ave San Jose, CA 95118

P.O. Number: TL 16099

Project Name: LRTO 111406SW3-SW7 Project Location: 402 Wright Ave, Richmond

Certificate of Analysis - Final Report

On November 15, 2006, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix

Test / Comments

Liquid

Composite

Conductivity: EPA 120.1

ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater

Subcontract - Oil & Grease 1664- Alpha

Subcontract - BOD- Alpha

Total Suspended Solids (TSS): EPA 160.2 VOCs: EPA 5030C / EPA 8021B

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Laurie Glantz-Murphy Laboratory Director

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Environmental Technical Services (ETS)

1548 Jacob Ave San Jose, CA 95118 Attn: Helen Mawhinney

Project Name: LRTO 111406SW3-SW7 Project Location: 402 Wright Ave, Richmond

Certificate of Analysis - Data Report

P.O. Number: TL 16099 Samples Received: 11/15/2006 Sample Collected by: Client

Matrix: Liquid Sample Date: 11/15/2006 12:00 PM

VOCs: EPA 5030C / EPA 80:	21B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
Велгее	ND		10	0.50	μg/L	N/A	N/A	11/15/2006	WGC061115	
Toluene	ND		10	0.50	$\mu g/L$	N/A	N/A	11/15/2006	WGC061115	
Ethyl Benzene	ND		10	0.50	$\mu g/L$	N/A	N/A	11/15/2006	WGC061115	
Xylenes, Total	ND		1.0	0.50	$\mu g/L$	N/A	N/A	11/15/2006	WGC061115	

Surrogate Surrogate Recovery Control Limits (%)
4-Bromofluorobenzene 96.9 65 - 135

Analyzed by: mruan

Reviewed by: EricKum

Conductivity: EPA 120.1

ab #: 52486-006

Parameter Result D/P-F **Detection Limit** Units Prep Date **Prep Batch Analysis Date** QC Batch 1000 1.0 Conductance 1.0 µmhos/cm N/A N/A 11/15/2006 WCOND061115

> Analyzed by: Jisiderio Reviewed by: RLAZARO

ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater

Sample ID: (SW3--SW7)Composite

	lt Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Copper 0.01	5	1.0	0 0050	mg/L	11/15/2006	WM061115	11/16/2006	WM061115
Lead 0.00s	0	1.0	0 0050	mg/L	11/15/2006	WM061115	11/16/2006	WM061115
Nickel NI		1.0	0 0050 .	mg/L	11/15/2006	WM061115	11/16/2006	WM061115
Zinc 0.05	1	1.0	0.010	mg/L	11/15/2006	WM061115	11/16/2006	WM061115

Analyzed by: Hdınh Reviewed by: DQueja

Total Suspended Solids (TSS): EPA 160.2

Parameter	Result	Qual D/P-	F Detecti	on Limit Units	Prep Date	te Prep Batch	Analysis Date	QC Batch
Total Suspended Solids	10	1.0		5.0 mg/L	N/A	N/A	11/16/2006	WTSS061116

Analyzed by: Jisideno Reviewed by: RLAZARO

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Replicate - Liquid - Conductivity: EPA 120.1

QC Batch ID: WCOND061115

QC Batch Analysis Date: 11/15/2006

Validated by: RLAZARO - 11/15/06

Replicate Sample RPD Parameter RPD Units QC Type Result Result Limits Conductance 52485-001 450 456 µmhos/cm 1.3 Replicate 250

Replicate - Liquid - Total Suspended Solids (TSS): EPA 160.2

QC Batch ID: WTSS061116

Validated by: RLAZARO - 11/17/06

QC Batch Analysis Date: 11/16/2006

Parameter		Sample Result	Replicate Result	Units	RPD	QC Type	RPD Limits
Total Suspended Solids	52491-007	6	6	mg/L	0.0	Replicate	200

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030C / EPA 8021B

QC Batch ID: WGC061115 Validated by: EricKum - 11/16/06

QC Batch Analysis Date: 11/15/2006

Parameter	Result	DF	PQLR	Units
Benzene	ND	1	0.50	μg/L
Ethyl Benzene	ND	1	0.50 .	μg/L
Toluene	ND	1	0.50	μg/L
Xylenes, Total	· ND	1	0.50	μg/L

Surrogate for Blank % Recovery Control Limits
4-Bromofluorobenzene 99.3 65 135

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS/LCSD - Liquid - VOCs: EPA 5030C/EPA 8021B

QC Batch ID: WGC061115 Reviewed by: EricKum - 11/16/06

QC Batch ID Analysis Date: 11/15/2006

LCS								
Parameter	Method Blan	k Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
B e nzene	<0.50	4.0	3.80	µg/L	95.0			65 - 135
Ethyl Benzene	<0.50	4.0	3 84	μg/L	96.0			65 - 135
Toluene	<0.50	4.0	3.75	μg/L	93.8			65 - 135
Xylenes, total	<0.50	. 12	12 3	μg/L	102			65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	102.0	65 - 135						
LCSD								
Parameter	Method Blan	k Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
Benzene	<0.50	4.0	3.83	μg/L	95.8	0.79	25.0	65 - 135
Ethyl Benzene	<0.50	4.0	3.93	μg/L	98.2	23	25.0	65 - 135
Toluene	<0.50	4.0	3 84	μg/L	96.0	2.4	25.0	65 - 135
Xylenes, total	<0.50	12	12.3	μg/L	102	0.0	25.0	65 - 135
Surrogate	% Recovery (Control Limits						
4-Bromofluorobenzene	101.0	65 - 135						

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for

Wastewater

QC Batch ID: WM061115 Reviewed by: HDINH - 11/16/06

QC/Prep Date: 11/15/2006

LCS								
Parameter	Method Blank	-	-	Units	% Recovery			Recovery Limits
Aluminum	<0.10	0 50	0 520	mg/L	104			75 - 125
Antimony	<0.010	0 50	0.541	mg/L	108			75 - 125
Arsenic	<0.010	0.50	, 0 497	mg/L	99.5	*		75 - 125
Barium	<0.0050	0.50	0.516	mg/L	103			75 - 125
Beryllium	<0.0050	0.50	0.499	mg/L	99.7			75 - 125
Cadmium	<0.0020	0.50	0.497	mg/L	99.5			75 - 125
Chromium	<0 0050	0 50	0.496	mg/L	99.3			75 - 125
Cobalt	<0.0050	0.50	0.507	mg/L	101			75 - 125
Copper	<0.0050	0.50	0 506	mg/L	101			75 - 125
Iron	<0.050	0.50	0.539	mg/L	108			75 - 125
Lead	< 0.0050	0.50	0 515	mg/L	103			75 - 125
Molybdenum	<0.0050	0.50	0 515	mg/L	103			75 - 125
Nickel	<0.0050	0.50	0.503	mg/L	101			75 - 125
Selenium	<0.020	0.50	0.475	mg/L	95.0			75 - 125
Silver	<0.0050	0.50	0.510	mg/L	102			75 - 125
Thallium	<0.020	0 50	0.483	mg/L	96.6			75 - 125
Tin	<0.050	1.0	1.05	mg/L	105			75 - 125
Titanium	<0 0020	0.50	0 519	mg/L	104			75 - 125
Vanadium	<0 0050	0.50	0.507	mg/L	101			75 - 125
Zinc	<0.010	0.50	0 500	mg/L	100			75 - 125
LCSD								
Parameter								
	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
Aluminum ·	Method Blank <0.10	Spike Amt 0.50	SpikeResult 0.511	Units mg/L	% Recovery 102	RPD 1.8	RPD Limits 25.0	Recovery Limits 75 - 125
		-	-		-			•
Aluminum ·	<0.10	0.50	0.511	mg/L	102	1.8	25.0	75 - 125
Aluminum · Antimony Arsenic	<0.10 <0 _. 010	0.50 0.50	0.511 0 528	mg/L mg/L	102 106	1.8 2.5	25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium	<0.10 <0,010 <0.010	0.50 0.50 0.50	0.511 0 528 0.492	mg/L mg/L mg/L	102 106 98.3	1.8 2.5 1.2	25.0 25.0 25.0	75 - 125 75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium	<0.10 <0,010 <0.010 <0.0050	0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512	mg/L mg/L mg/L mg/L	102 106 98.3 102	1.8 2.5 1.2 0.86	25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium	<0.10 <0,010 <0.010 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494	mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7	1.8 2.5 1.2 0.86 0.99	25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium	<0.10 <0,010 <0.010 <0.0050 <0.0050 <0.0020	0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496	mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1	1.8 2.5 1.2 0.86 0.99 0.38	25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	<0.10 <0,010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495	mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9	1.8 2.5 1.2 0.86 0.99 0.38 0.34	25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum · Antimony	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32 0.83	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505 0.502 0.524 0.505	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100 105	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32 0.83 2.8 1.8	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505 0.502 0.524 0.505 0.505	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100 105 101	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32 0.83 2.8 1.8 2.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505 0.502 0.524 0.505 0.505	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100 105 101 101	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32 0.83 2.8 1.8 2.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505 0.502 0.524 0.505 0.505 0.502	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100 105 101 101 100 94.7	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32 0.83 2.8 1.8 2.1 0.22 0.30	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium Silver	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0020 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505 0.502 0.524 0.505 0.505 0.505 0.502	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100 105 101 100 94.7 103	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32 0.83 2.8 1.8 2.1 0.22 0.30 0.88	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium Silver Thallium	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505 0.502 0.524 0.505 0.505 0.505 0.502 0.474 0.514	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100 105 101 100 94.7 103 97.2	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32 0.83 2.8 1.8 2.1 0.22 0.30 0.88 0.64	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium Silver Thallium	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505 0.502 0.524 0.505 0.505 0.502 0.474 0.514 0.486 1.01	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100 105 101 100 94.7 103 97.2	1.8 2.5 1.2 0.86 0.99 0.38 0.32 0.83 2.8 1.8 2.1 0.22 0.30 0.88 0.64 3.6	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	<0.10 <0.010 <0.010 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.511 0 528 0.492 0.512 0.494 0 496 0.495 0.505 0.502 0.524 0.505 0.505 0.505 0.502 0.474 0.514	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	102 106 98.3 102 98.7 99.1 98.9 101 100 105 101 100 94.7 103 97.2	1.8 2.5 1.2 0.86 0.99 0.38 0.34 0.32 0.83 2.8 1.8 2.1 0.22 0.30 0.88 0.64	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	75 - 125 75 - 125

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

22 November 2006

Entech Analytical Labs, Inc.

Attn: Simon Hague 3334 Victor Court

Santa Clara, CA 95054

RE: 52486

Work Order: 06K0560

Enclosed are the results of analyses for samples received by the laboratory on 11/15/06 17:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kelley M. Thompson For Robert C. Phillips

Project Manager

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 4

Entech Analytical Labs, Inc. 3334 Victor Court

Santa Clara, CA 95054 Attn: Simon Hague

Report Date: 11/22/06 12:05 Project No:

52486

Project ID: 52486

Drder Number 06K0560

Receipt Date/Time 11/15/2006 17:00 Client Code **ENTECH**

Client PO/Reference

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
. 52486-006 (SW3SW7) Composite	06K0560-01	Water	11/15/06 12:00	11/15/06 17:00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

11/22/2006

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 4

Entech Analytical Labs, Inc.

3334 Victor Court Santa Clara, CA 95054 Attn: Simon Hague

Report Date: 11/22/06 12:05

Project No: 52486 52486 Project ID:

Order Number 06K0560

Receipt Date/Time 11/15/2006 17.00

Client Code **ENTECH**

Client PO/Reference

Alpha Analytical Laboratories, Inc.

· · · · · · · · · · · · · · · · · · ·									
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE	
2486-006 (SW3SW7) Composite (06K0560-01)		:	Sample Type	: Water	Sam				
Conventional Chemistry Parameters by	APHA/EPA Methods								
Biochemical Oxygen Demand	SM5210B	AK61718	11/16/06	11/21/06	1	ND mg/l	5 0		
Oil & Grease (HEM)	EPA 1664	AK61903	11/20/06	11/21/06	17	8.1 "	5.0	_	

The results in this report apply to the samples analyzed in accordance with the chain af custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

11/22/2006

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 4

Entech Analytical Labs, Inc.

3334 Victor Court Santa Clara, CA 95054 Attn: Simon Hague

Project No:

Report Date: 11/22/06 12:05

Project ID:

52486

52486

Drder Number 06K0560

Receipt Date/Time 11/15/2006 17:00

Client Code **ENTECH**

Client PO/Reference

SourceResult

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag	
Batch AK61718 - General Preparation							1				
Blank (AK61718-BLK1)				Prepared: 11/16/06 Analyzed: 11/21/06							
Biochemical Oxygen Demand	ND	5 0	mg/l								
LCS (AK61718-BSI)				Prepared: 11/16/06 Analyzed, 11/21/06							
Biochemical Oxygen Demand	202	5 0	mg/l	200		101	80-120				
LCS Dup (AK61718-BSD1)				Prepared 11/16/06 Analyzed. 11/21/06							
Biochemical Oxygen Demand	199	50	mg/l	200		99 5	80-120	1 50	20	Valvania	
Batch AK61903 - General Preparation											
Blank (AK61903-BLK1)				Prepared: 11/19/06 Analyzed. 11/21/06							
Oil & Grease (HEM)	ND	50	mg/l								
LCS (AK61903-BS1)				Prepared: 11/19/06 Analyzed. 11/21/06							
Oil & Grease (HEM)	19.7	50	mg/l	20.0		98 5	78-114				
Matrix Spike (AK61903-MS1)	Source: 06K0271-03		Prepared: 11/19/06 Analyzed: 11/21/06								
Oil & Grease (HEM)	174	5 0	mg/l	20 0	62	56 0	78-114			QM-01	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director

11/22/2006

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 4

Entech Analytical Labs, Inc.

3334 Victor Court

Santa Clara, CA 95054 Attn: Simon Hague

Report Date: 11/22/06 12:05

Project No: 52486

52486 Project ID:

Order Number 06K0560

Receipt Date/Time 11/15/2006 17 00

Client Code **ENTECH**

Client PO/Reference

Notes and Definitions

The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix

interference.

Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit

Not Reported

Sample results reported on a dry weight basis

Relative Percent Difference

Practical Quantitation Limit

Relinquished By:

Received By:

Date: 157

Time: 1700

Received By:

Rec

Notes:

Report to Data@EntechLabs.com

Via Couriet

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road, Milpitas, CA 95035 Phone: 408.263,5258 • FAX: 408.263.8293

LRTO 111406 SW3 > SW7

CHAIN OF CUSTODY

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY

TL 16099

www.torrentiab.com														
Company Name: ETS (Su)	ruple #LRTO 1114	106363	-567	Location o	of Sampling	Lavi	y Ke	kne	reda	ker	W Ki	1 44	Unio	At auc
Address: 1548 UACOBA		•		Purpose:	# B								iatti	71 /
city: San Jose	State: Off	Zip Code:	95118	Special In	structions	/ Comm	ents: V	OPS	<u> </u>	3-50	קעי	are	descr	ete e
Telephone: 510 385 4308	FAX:			to be	any	Dogu	Ed	wit	10					samples
REPORT TO: Helen	SAMPLER: TON	r Les	TER	P.O.#:					MAIL:	hm	rwk	ממו	eyets	egol.
TURNAROUND TIME:		LE TYPE:		REPORT FOR				A	NALY	SIS R	EQUE			v
10 Working Days 3 Working Day 7 Working Days 2 Working Day 6 Working Days 24 Hours		orm Water Diste Water Scound Wa	nitery 1	QC Level EDF Excel / ED	TIP OC	d Jack	10.20g	HEW.		nne				Jos or analyse walyse
CLIENT'S SAMPLE I.D.	DATE/TIME SAMPLED	SAMPLE TYPE	#OF	CONT TYPE	De la	P) Bi	d (0)	/ ~ N	Sept 8	00/			TO	RRENT'S MPLE LD.
15W3 - SW7(was)	524867		. إ	S		\searrow	\searrow	\bigvee	\setminus					
Composition in 2.													-	
3.363	001					·			<i>C</i> 13.			10		
4.5W4 discrete	002		- 200	/										
5. 3W5 to arripoon	603	>	000									- W		nga shaqasa di inta are are marayan di indigasa.
6. 5W6 above	004											4		
7. SW7) Dangeles	005								sik in				•	
8. 5 w								```						·····
9.													***************************************	
10.	<u> </u>													
Relinguished By: Pri	11-/3	5-2006	Time:		ceived By:	<u> </u>	1	Print: VON	JAG	J1888	Date:	11/15	06 Time	928
2 Relinquished By: Pri	nt: Date (5/06	Time:	A Re	zbivjed By:		S	Print:			Date:		Time	

Laboratory Analytical Report

February 27, 2007

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Helen Mawhinney Lab Certificate Number: 54185

Environmental Technical Services (ETS) Issued: 03/13/2007

1548 Jacob Ave

San Jose, CA 95118

P.O. Number: TL16542

Project Name: Storm Water-Richmond

Certificate of Analysis - Final Report

On February 27, 2007, samples were received under chain of custody for analysis.

Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Test / Comments

Liquid Composite

Conductivity: EPA 120.1

ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater

Oil & Grease: EPA 418.1 w/o Silica Gel (Freon-IR)

Subcontract - BOD-Alpha

Total Suspended Solids (TSS): EPA 160 2 VOCs: EPA 5030C / EPA 8021B

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

C. L. Thom

Laboratory Director

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Environmental Technical Services (ETS)

1548 Jacob Ave San Jose, CA 95118

Attn: Helen Mawhinney

Project Name: Storm Water-Richmond

P.O. Number: TL16542

Samples Received: 02/27/2007

Sample Collected by: Client

Certificate	of	Analysis	-	Data	Report	
9						

ab#: 54185-006 Sample ID: SW(3-7)Composite Matrix: Liquid Sample Date: 2/27/2007

VOCs: EPA 5030C / EPA 8021B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	0.50	μ g/L	N/A	N/A	3/6/2007	WGC070306
Toluene	ND		1.0	0.50	μ g/L	N/A	N/A	3/6/2007	WGC070306
Ethyl Benzene	ND		1.0	0.50	μ g/L	N/A	N/A	3/6/2007	WGC070306
Xylenes, Total	ND		1.0	0.50	μg/L	N/A	N/A	3/6/2007	WGC070306

Analyzed by: MaiChıTu Control Limits (%) Surrogate Surrogate Recovery 4-Bromofluorobenzene 109 - 135 Reviewed by EncKum

Conductivity: EPA 120.1

Parameter Result D/P-F **Detection Limit** Units **Prep Date** Prep Batch **Analysis Date** QC Batch 280 1.0 N/A 2/27/2007 WCOND070227 Conductance 1.0 N/A μmhos/cm

> Analyzed by: Rlazaro Reviewed by. HDINH

CP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater

Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
Copper	0.012		1.0	0.0050	mg/L	2/27/2007	WM070227B	2/28/2007	WM070227B	
Lead	0.016	-	10	0.0050	mg/L	2/27/2007	WM070227B	2/28/2007	WM070227B	
Nickel	ND		10	0.0050	mg/L	2/27/2007	WM070227B	2/28/2007	WM070227B	
Zinc	0.080		10	0.010	mg/L	2/27/2007	WM070227B	2/28/2007	WM070227B	_
· · · · · · · · · · · · · · · · · · ·										

Analyzed by: CTran Reviewed by: HDINH

Dil & Grease: EPA 418.1 w/o Silica Gel (Freon-IR)

Parameter	Result	Qual D/P	-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Oil and Grease, Total	ND	1.	0	5.0	mg/L	N/A	N/A	3/1/2007	WOGIR070301

Analyzed by: Riazaro Reviewed by: HDINH

Total Suspended Solids (TSS): EPA 160.2

Parameter	Result	Qual D/P-1	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Total Suspended Solids	27	1.0	5.0	mg/L	· N/A	N/A	3/5/2007	WTSS070305B

Analyzed by Rlazaro Reviewed by HDINH

Qual = Data Qualifier

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030C / EPA 8021B

QC Batch ID: WGC070306 Validated by: TFulton - 03/07/07

QC Batch Analysis Date: 3/6/2007

Parameter	Result	DF	PQLR	Units
Benzene	ND	1	0.50	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Toluen e	ND .	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank % Recovery Control Limits 4-Bromofluorobenzene 104 65 - 135

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS/LCSD - Liquid - VOCs: EPA 5030C/EPA 8021B

QC Batch ID: WGC070306 Reviewed by: TFulton - 03/07/07

QC Batch ID Analysis Date: 3/6/2007

LCS								
Parameter	Method Blan	k Spike Amt	SpikeResult	Units	% Recovery	•		Recovery Limits
Benzene	<0.50	4.0	3.71	μg/L	92.8			65 - 135
Ethyl Benzene	,<0.50	4.0	3 99	μg/L	99.8			65 - 135
Toluene	<0.50	4.0	3 79	μg/L	94.8			65 - 135
Xylenes, total	<0.50	12	11.4	μg/L	94.7			65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	101.0	65 - 135						
LCSD								
Parameter	Method Blan	k Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
Benzene	<0.50	4.0	3.93	μg/L	98.2	5.8	25.0	65 - 135
Ethyl Benzene	<0.50	40	4.07	μg/L	102	2.0	25.0	65 - 135
Toluene	< 0.50	4.0	3.95	μg/L	98.8	4.1	25.0	65 - 135
Xylenes, total	<0.50	12	11.9	μg/L	99.2	46	25.0	65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	107.0	65 - 135						

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Replicate - Liquid - Conductivity: EPA 120.1

QC Batch ID: WCOND070227 Validated by: HDINH - 03/01/07

QC Batch Analysis Date: 2/27/2007

Sample Replicate RPD RPD QC Type **Parameter** Units Result Result Limits Conductance 54185-006 275 271 25.0 1.5 Replicate µmhos/cm

Replicate - Liquid - Total Suspended Solids (TSS): EPA 160.2

QC Batch ID: WTSS070305B Validated by HDINH - 03/06/07

QC Batch Analysis Date: 3/5/2007

RPD Sample Replicate **Parameter** Result Result Units RPD QC Type Limits ND ND 20.0 Total Suspended Solids 54196-003 mg/L 0.0 Replicate

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for

Wastewater

Selenium

Thallium

Vanadium

Silver

Zinc

<0.020

<0 0050

<0.020

<0.0050

<0.010

0.50

0.50

0.50

0.50

0.50

0.444

0.498

0.453

0.496

0.490

mg/L

mg/L

mg/L

mg/L

mg/L

88.9

99.7

90.6

99.2

98.1

3.3

0 79

0.20

2.0

2.2

25.0

25 0

25 0

25.0

25.0

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

Reviewed by: HDINH - 03/01/07 QC Batch ID: WM070227B

LCS Parameter	Method Blank	Spike Amt	SnikeResult	Units	% Recovery			Recovery Limits
Antimony	<0.010	0.50	0 499	mg/L	99.7			75 - 125
Arsenic	<0.010	0.50	0.462	mg/L	92 3			75 - 125
Barium	<0.0050	0.50	0.489	mg/L	97 8			75 - 125
Beryllium	<0.0050	0.50	0.479	mg/L	95.9			75 - 125
Cadmium	<0.0020	0.50	0.472	mg/L	94.5			75 - 125
Chromium	< 0.0050	0.50	0.460	mg/L	92.0			75 - 125
Cobalt	<0.0050	0.50	0.478	mg/L	95.7			75 - 125
Copper	<0.0050	0.50	0.480	mg/L	96.1			75 - 125
Iron	<0.050	0.50	0 495	mg/L	99.1			75 - 125
Lead	<0.0050	0 50	0.490	mg/L	97.9			75 - 125
Molybdenum	<0.0050	0.50	0.482	mg/L	96.4			75 - 125
Nickel	<0 0050	0.50	0.466	mg/L	93.1			75 - 125
Selenium	<0.020	0 50	0.430	mg/L	86 0			75 - 125
Silver	<0 0050	0.50	0.494	mg/L	98 9			75 - 125
Thallium	<0.020	0.50	0.454	mg/L	90.8			75 - 125
Vanadium	<0.0050	0.50	0.486	mg/L	97.2			75 - 125
Zinc	<0.010	0.50	0.479	mg/L	95.9			75 - 125
LCSD								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
Antimony	<0.010	0.50	0.499	mg/L	99.8	0.10	25 0	75 - 125
Arsenic	<0 010	0.50	0.465	mg/L	93 1	0.78	25 0	75 - 125
Barium	<0.0050	0.50	0 496	mg/L	99 2	1.4	25 0	75 - 125
Beryllium	<0.0050	0.50	0.483	mg/L	96 6	0.73	25.0	75 - 125
Cadmium	<0.0020	0.50	0.480	mg/L	95.9	1 5	25.0	75 - 125
Chromium	<0.0050	0.50	0.468	mg/L	93.5	1.6	25.0	75 - 125
Cobalt	<0.0050	0.50	0.487	mg/L	97.4	1.8	25.0	75 - 125
Copper	<0.0050	0.50	0.491	mg/L	98.2	2.2	25.0	75 - 125
Iron	<0.050	0 50	0.492	mg/L	98.4	0.67	25.0	75 - 125
Lead	<0.0050	0.50	0.487	mg/L	97.3	0.61	25.0	75 - 125
Molybdenum	<0.0050	0.50	0.484	mg/L	96.7	0 39	25.0	75 - 125
Nickel	<0.0050	0.50	0.476	mg/L	95.2	2.3	25.0	75 - 125
. .	0.000							

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - Oil & Grease: EPA 418.1 w/o Silica Gel (Freon-IR)

QC Batch ID: WOGIR070301 Reviewed by: HDINH - 03/02/07

QC Batch ID Analysis Date: 3/1/2007

LCS

Parameter Method Blank Spike Amt SpikeResult Units % Recovery Recovery Limits

Oil and Grease, Total <5.0 20 17.8 mg/L 89.1 75 - 125

LCSD

Parameter Method Blank Spike Amt SpikeResult Units % Recovery RPD RPD Limits Recovery Limits

Oil and Grease, Total <5 0 20 18 1 mg/L 90 7 1.8 25 0 75 - 125

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

08 March 2007

Entech Analytical Labs, Inc.

Attn: Simon Hague 3334 Victor Court

Santa Clara, CA 95054

RE: Storm Water-Richmond

Work Order: 07B0863

Enclosed are the results of analyses for samples received by the laboratory on 02/28/07 15:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri L. Speaks For Robert C. Phillips Project Manager

Sheri Speaks

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: {707} 468-0401 • Fax: {707} 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 4

Entech Analytical Labs, Inc. 3334 Victor Court

Santa Clara, CA'95054 Attn: Simon Hague

Report Date: 03/08/07 09:23

Project No: 54185

Project ID: Storm Water-Richmond

Order Number 07B0863

Receipt Date/Time 02/28/2007 15.00 Client Code **ENTECH**

Client PO/Reference

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
54185-006 SW(3-7)Composite	07B0863-01	Water	02/27/07 00:00	02/28/07 15:00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

3/8/2007

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 4

Entech Analytical Labs, Inc.

3334 Victor Court Santa Clara, CA 95054

Attn: Simon Hague

03/08/07 09:23 Report Date:

Project No: 54185

Storm Water-Richmond Project ID:

Order Number 07B0863

Receipt Date/Time

02/28/2007 15:00

Client Code **ENTECH**

Client PO/Reference

Alpha Analytical Laboratories, Inc.

METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE	
1)	1	Sample Type	: Water	Sam	pled: 02/27/07 00:00			
A/EPA Methods								
SM5210B	AC70107	03/01/07	03/06/07	1	ND mg/l	5.0	T	-3
	1) A/EPA Methods	1) A/EPA Methods	1) Sample Type A/EPA Methods	Sample Type: Water A/EPA Methods	1) Sample Type: Water Sam A/EPA Methods	Sample Type: Water Sampled: 02/27/07 00:00 A/EPA Methods	Sample Type: Water Sampled: 02/27/07 00:00 A/EPA Methods	(1) Sample Type: Water Sampled: 02/27/07 00:00 A/EPA Methods

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

3/8/2007

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 4

Entech Analytical Labs, Inc.

3334 Victor Court

Santa Clara, CA 95054

Attn: Simon Hague

Report Date: 03/08/07 09:23

54185 Project No:

Project ID:

Storm Water-Richmond

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

07B0863

02/28/2007 15:00

ENTECH

SourceResult

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AC70107 - General Preparation								-		
Blank (AC70107-BLK1)				Prepared: (3/01/07 A	nalyzed: 03	/06/07			
Biochemical Oxygen Demand	ND	5 0	mg/l			***************************************				
LCS (AC70107-BS1)				Prepared: (3/01/07 A	nalyzed: 03	/06/07			
Biochemical Oxygen Demand	197	5.0	mg/l	200		98 5	80-120			
LCS Dup (AC70107-BSD1)				Prepared: (3/01/07 A	nalyzed: 03	/06/07			
Biochemical Oxygen Demand	199	5 0	mg/l	200		99.5	80-120	1 01	20	

The results in this report apply to the samples analyzed in accordance with the chain $\,\,\,$ of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director.

3/8/2007

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 4

Entech Analytical Labs, Inc.

3334 Victor Court

Santa Clara, CA 95054

Attn: Simon Hague

03/08/07 09:23 Report Date:

54185 Project No:

Storm Water-Richmond Project ID:

Order Number 07B0863

Receipt Date/Time 02/28/2007 15:00

Client Code **ENTECH**

Client PO/Reference

Notes and Definitions

Client did not specify sampling time.

DET Analyte DETECTED

ND. Analyte NOT DETECTED at or above the reporting limit

Not Reported

Sample results reported on a dry weight basis

RPD Relative Percent Difference POL

Practical Quantitation Limit

Entech ID and PO#: 54185

3334 Victor Court, Santa Clara, CA 95054

(408) 588-0200

FAX (408) 588-0201

Subcontract Chain of Custody

Subcontract Lab:

Alpha Analytical

Date Sent: 2/28/07

Date Due: 3/13/07

3/13/07

Project Name: Storm Water-Richmond

Entech LabNumber

Customer Sample Name/Field Point ID

Matrix Method

Collect Date Collect Time

54185-006

SW(3-7)Composite

Liquid BOD-Alpha

2/27/2007

Comments:

Report to Data@EntechLabs.com

07B0863-01

Relinquished By:

Received By:

Send the Report to: DATA@ENTECHLABS.COM

ENTECH ORIGINAL

408.354.6225 • 800.776.5636

TORRENT LABORATORY, INC. 483 Sinclair Frontage Road, Milpitas, CA 95035 Phone: 408.263.6258 • FAX: 408.263.8293 www.torrentlab.com

LRTO 111406 SW3 > SW7 **CHAIN OF CUSTODY**

ţ	54185	
	LAB WORK ORDER NO	
		-

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •

Company Name: ETS (Sun	uple LRTO 1114	<u>1063W3-5U</u>	/ J Loca	tion of Sar	npling:	in Ku	<u>kverea</u>	Ler	KLKIT	402 LURIO	rht Cuc
Address: 1548 UACOBA			Purp	ose:///	MOLL	tin	tucea	tos - 1	storn	nuater	. Richard
city:San UBse	State: C/9	Zip Code:95//	P Spec	ial Instruct	ions / Com	ments: _V	OPS 30	<u> 13 - 50</u>	:07 a	re desce	ete e
Telephone: 510 385 4308	FAX:		to	be a	mypasi	LEA.	with	othu	<u> تبهی</u>	2-5W7	samples
REPORT TO: Holon	SAMPLER: R.	1. LESTER	P.O.	#: 7	<u> </u>	42	EMAI	hm	rwhi	nneyets	@901.00
TURNAROUND TIME:	í <u>-</u>	LE TYPE:	1	r Format:			ANA	YSIS R	EQUEST	ED /	
10 Working Days 3 Working Day 7 Working Days 2 Working Day 5 Working Days 24 Hours	_ N	orm Water Soni to out of the count water Sewer Silver Olf Clean out interceptor	/ TEDF	eI/EDD	My 190	14 50°3°	Constitute of	do tre			las on analyses nalyses
CLIENT'S SAMPLE I.D.	DATE/TIME SAMPLED	SAMPLE # OF TYPE CONT		778	13/x	iet of	FURIO .	000		TO SA	RRENT ^I S MPLE LD.
1563-567/cvas	2/27/01/1500/m	1 5 galle		X	$\times\!\!\!/\!\!\!\!>$	X	X		0	(806)	As Confo
2. Composite in 2.		3 x 1-litely	<u>/</u>								
3503		VOA 4	VOA							001	
4. SW9 discrete	157	YOA 4	VUA			A				202	
5. GWS to aerepoort		250 M 1	YOA +							003	
6. (3W6) above	the state of the s	250 M 1	VOA +	ŀ	€ 2					204	
1. (5 w)) samples		1250M1 1	VOA +	-						005	
8. 500 ·	<u> </u>			1		*					
9.		·				F					
10.						ž					
1 Richard A Lester Ru		/27/07 Time:	2750	Received	Y->	R	Print;	iself			3950
2 Relinquished By: Prin	nt: Date:	27/07 Time:	223	Received	By:	<u>\</u>	Print:	umme	Date:	07 Time	12:22

Laboratory Analytical Report

June 28, 2007

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Helen Mawhinney

Lab Certificate Number: 56143

Environmental Technical Services (ETS)

Issued: 07/06/2007

1548 Jacob Ave

San Jose, CA 95118

P.O. Number: TL16923

Project Name: Levin Richmond Terminal Project Location: 402 Wright, Richmond, CA

Certificate of Analysis-Final Report

Note: Subcontract report to follow.

On June 28, 2007, samples were received under chain of custody for analysis.

Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix

Test / Comments

Liquid

Composite

Conductivity: EPA 120.1/Std. Methods (18th Ed.) 2510B

ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater

pH - EPA 9040C for Groundwater and Water - EPA 150.1/Std. Methods (18th Ed.) 4500-H+B for Wastewater

Subcontract - Oil & Grease By 1664 - Alpha

Subcontract - BOD - Alpha Subcontract - TSS - Alpha VOCs: EPA 5030B / EPA 8021B

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

C. L. Thom

Laboratory Director

C. L. Thom

Entech Analytical Labs, Inc.

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Environmental Technical Services (ETS)
1548 Jacob Ave
San Jose, CA 95118
Attn: Helen Mawhinney

Project Name: Levin Richmond Terminal
Project Location: 402 Wright, Richmond, CA

P.O. Number: TL16923

P.O. Number: TL16923
Samples Received: 06/28/2007
Sample Collected by: Client

Certificate of An	port	Samples Received: 06/28/2007 Sample Collected by: Client							
Lab#: 56143-006 S	ample ID: LRT	ro sw	/3-SW7	Composite	· N	/latrix: Liqui	d Sample	Date: 6/28/2007	7:00 AM
Conductivity: EPA 120.1/Std.									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Conductance	7100		1.0	1.0	μmhos/cm	N/A	N/A	6/28/2007	WCOND070628
1								Analyzed by EBlan	co
,								Reviewed by: rlazar	o
CP Metals: EPA 3010A / EP.	-			-					
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Copper	0.0076		1.0	0.0050	mg/L	6/28/2007	WM070628	6/29/2007	WM070628
Nickel	ND		1.0	0.0050	mg/L	6/28/2007	WM070628	6/29/2007	WM070628
Zinc	0.022		1.0	0.010	mg/L	6/28/2007	WM070628	6/29/2007	WM070628
								Analyzed by: CTran	ı
								Reviewed by. DQue	eja
pH - EPA 9040C for Grounds	water and Water - E	CPA 150	.1/Std. M	ethods (18th Ed.)	4500-H+B 1	for Wastewater			
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
pН	7.9		1.0	0.0	pH Units	N/A	N/A	6/28/2007	WPH070628
			-				Tan.	Analyzed by, EBlan	co
								Reviewed by: rlazar	ro ·
VOCs: EPA 5030B / EPA 802	1B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND	,	1.0	0.50	μg/L	N/A	N/A	7/6/2007	WGC070705
Toluene	6.7		1.0	0.50	μg/L	N/A	N/A	7/6/2007	WGC070705
Ethyl Benzene	ND		1.0	0.50	μg/L	N/A	N/A	7/6/2007	WGC070705
Kylenes, Total	ND		1.0	1.0	μg/L	N/A	N/A	7/6/2007	WGC070705
Surrogate	Surrogate Recover	у	Control l	Limits (%)				Analyzed by: EricK	um
4-Bromofluorobenzene	112		65 -	135				Reviewed by: TFult	

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Replicate - Liquid - Conductivity: EPA 120.1/Std. Methods (18th Ed.) 2510B

QC Batch ID: WCOND070628 Validated by: rlazaro - 06/29/07

QC Batch Analysis Date: 6/28/2007

Sample Replicate **RPD Parameter RPD** Result Units QC Type Limits Result Conductance 56143-006 7130 7170 Replicate 25.0 µmhos/cm 0.6

Replicate - Liquid - pH - EPA 9040C for Groundwater and Water - EPA 150.1/Std. Methods (18th Ed.) 4500-

H+B for Wastewater

QC Batch ID: WPH070628 Validated by: rlazaro - 06/29/07

QC Batch Analysis Date: 6/28/2007

Parameter		Sample Result	Replicate Result	Units	RPD	QC Type	RPD Limits
pН	56143-006	7.927	7 936	pH Units	0.1	Replicate	25.0

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - VOCs: EPA 5030B / EPA 8021B

QC Batch ID: WGC070705 Reviewed by: TFulton - 07/06/07

QC Batch ID Analysis Date: 7/5/2007

LCS								
Parameter	Method Blan	k Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
Benzene	<0.50	4	3.85	μg/L	96.2			65 - 135
Ethyl Benzene	<0.50	4	3.89	μg/L	97.2			65 - 135
Methyl-t-butyl Ether	<2.0	4	3.98	μg/L	99.5			65 - 135
Toluene	<0.50	4	3.94	μg/L	98.5			65 - 135
Xylenes, total	<1.0	12	11.8	μg/L	98.3			65 - 135
Surrogate	% Recovery (Control Limits						
4-Bromofluorobenzene	118	65 - 135						
LCSD								
Parameter	Method Blan	k Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
Benzene	<0.50	4	3.84	μg/L	96.0	0.260	25.0	65 - 135
Ethyl Benzene	<0.50	4	3.88	μg/L	97.0	0.257	25.0	65 - 135
Methyl-t-butyl Ether	<2.0	4	4.44	μg/L	111	10.9	25.0	65 - 135
Toluene	<0.50	4	3.84	μg/L	96.0	2.57	25.0	65 - 135
Xylenes, total	<1.0	12	11.7	μg/L	97.5	0.851	25.0	65 - 135
Surrogate	% Recovery (Control Limits						
4-Bromofluorobenzene	112	65 - 135	-					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for

Wastewater

Silver

Tin

Zinc

Thallium

Titanium

Vanadium

< 0.0050

<0.020

<0.050

< 0.0020

<0.0050

<0.010

0.5

0.5

1

0.5

0.5

0.5

0.490

0.452

0.974

0.497

0.496

0.470

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

98.0

90.3

97.4

99.4

99.2

94.1

0.225

0.442

0.0308

0.542

0.0202

0.0638

25.0

25.0

25.0

25.0

25.0

25.0

85 - 115

85 - 115

85 - 115

85 - 115

85 - 115

85 - 115

QC Batch ID: WM070628 Reviewed by: HDINH - 06/28/07

QC/Prep Date: 6/28/2007

	QC/Prep Date: 6	12812001							
)	LCS			÷					
	Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
	Antimony	<0.010	0.5	0.490	mg/L	98.0			85 - 115
!	Arsenic	<0.010	0.5	0.459	mg/L	91.9			85 - 115
	Barium	<0.0050	0.5	0.499	mg/L	99.9			85 - 115
	Beryllium	<0.0050	0.5	0.469	mg/L	93.7			85 - 115
	Boron	<0.0050	0.5	0.461	mg/L	92.1			85 - 115
1	Cadmium	<0.0020	0.5	0.466	mg/L	93.2			85 - 115
	Chromium	<0.0050	0.5	0.481	mg/L	96.2			85 - 115
•	Cobalt	<0.0050	0.5	0.494	mg/L	98.9			85 - 115
	Copper	<0.0050	0.5	0.489	mg/L	97.7			85 - 115
	Lead	<0.0050	0.5	0.490	mg/L	98.0			85 - 115
	Manganese	<0.0020	0.5	0.496	mg/L	99.2			85 - 115
ř	Molybdenum	<0.0050	0.5	0.496	mg/L	99.2			85 - 115
	Nickel	<0.0050	0.5	0.479	mg/L	95.8			85 - 115
•	Selenium	<0.020	0.5	0.433	mg/L	86.6			85 - 115
)	Silver	<0.0050	0.5	0.489	mg/L	97.8			85 - 115
	Thallium	<0.020	0.5	0.454	mg/L	90.7			85 - 115
4	Tin	<0.050	1	0.974	mg/L	97.4			85 - 115
•	Titanium	<0.0020	0.5	0.500	mg/L	99.9			85 - 115
	Vanadium	<0.0050	0.5	0.496	mg/L	99.2			85 - 115
•	Zinc	<0.010	0.5	0.471	mg/L	94.1			85 - 115
•	LCSD								
ì	Parameter	Method Blank	Snike Amt	SnikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
	Antimony	<0.010	0.5	0.483	mg/L	96.7	1.34	25.0	85 - 115
ı	Arsenic	<0.010	0.5	0.464	mg/L	92.7	0.932	25.0	85 - 115
1	Barium	<0.0050	0.5	0.484	mg/L	96.7	3.17	25.0	85 - 115
	Beryllium	<0.0050	0.5	0.467	mg/L	93.4	0.363	25.0	85 - 115
1	Boron	<0.0050	0.5	0.453	mg/L	90.5	1.75	25.0 25.0	85 - 115
)	Cadmium	<0.0020	0.5	0.470	mg/L	94.0	0.769	25.0	85 - 115
	Chromium	<0.0050	0.5	0.481	mg/L	96.2	0.0624	25.0	85 - 115
•	Cobatt	<0.0050	0.5	0.491	mg/L	98.2	0.649	25.0 25.0	85 - 115
)	Copper	<0.0050	0.5	0.494	mg/L	98.8	1.10	25.0	85 - 115
	Lead	<0.0050	0.5	0.493	mg/L	98.6	0.590	25.0 25.0	
•	Manganese	<0.0020	0.5	0.494	mg/L	98.8	0.590	25.0 25.0	85 - 115 85 - 115
)	Molybdenum	<0.0020	0.5	0.495	mg/L	99.0	0.202	25.0 25.0	85 - 115 85 - 115
	Nickel	<0.0050	0.5	0.493	mg/L	95.5	0.202		
•	Selenium	<0.020	0.5 0.5	0.477		95.5 87.7	1.19	25.0	85 - 115
	Colonium	~0.020	U. 5	U.430	mg/L	01.1	1.19	25.0	85 - 115

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone. (707) 468-0401 • Fax: (707) 468-5267

10 July 2007

Entech Analytical Labs, Inc.

Attn: Simon Hague
3334 Victor Court

Santa Clara, CA 95054

RE: Levin Richmond Terminal

Work Order: 07F0998

Enclosed are the results of analyses for samples received by the laboratory on 06/29/07 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nena M. Burgess For Robert C. Phillips

Project Manager

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 5

Entech Analytical Labs, Inc.

3334 Victor Court

Santa Clara, CA 95054

Attn: Simon Hague

Report Date: 07/10/07 15:09

56143 Project No:

Levin Richmond Terminal Project ID:

Order Number 07F0998

Receipt Date/Time 06/29/2007 16:30

Client Code **ENTECH**

Client PO/Reference

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
56143-006 LRTO SW-3-SW-7 Compos	07F0998-01	Water	06/28/07 07:00	06/29/07 16:30

he results in this report apply to the samples analyzed in accordance with the chain f custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason Street, Ukiah, California 95482

e-mail. clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 5

Entech Analytical Labs, Inc.

3334 Victor Court

Santa Clara, CA 95054

Project No:

Report Date: 07/10/07 15:09

56143 Project ID:

Levin Richmond Terminal

Attn: Simon Hague

Client Code

rder Number 7F0998

Receipt Date/Time 06/29/2007 16:30

ENTECH

Client PO/Reference

Alpha Analytical Laboratories, Inc.								
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
143-006 LRTO SW-3-SW-7 Compos	(07F0998-01)		Sample Type	: Water	Sam	pled: 06/28/07 07:00	2	
Conventional Chemistry Parameters by AP	HA/EPA Methods							
Biochemical Oxygen Demand	SM5210B	AG70804	06/29/07	07/04/07	ŧ	5.8 mg/l	5.0	
Total Suspended Solids	SM2540D	AG70215	07/02/07	07/06/07	W	7.3 "	1.0	
Oil & Grease (HEM)	EPA 1664	AG70327	07/03/07	07/05/07	n	ND"	50	

e results in this report apply to the samples analyzed in accordance with the chain custody document. This analytical report must be reproduced in its entirety.

> **Bruce Gove** Laboratory Director

208 Mason Street, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 5

Entech Analytical Labs, Inc. 3334 Victor Court

Santa Clara, CA 95054

Attn: Simon Hague

Report Date: 07/10/07 15:09

56143 Project No:

Project ID: Levin Richmond Terminal

Order Number 07F0998

Receipt Date/Time 06/29/2007 16:30 Client Code **ENTECH**

Client PO/Reference

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AG70215 - General Preparation								<u></u>		
Blank (AG70215-BLK1)				Prepared: 0	7/02/07 A	nalyzed: 07	/06/07			
Total Suspended Solids	ND	10	mg/l							
Duplicate (AG70215-DUP1)	Sour	ce: 07F088	2-01	Prepared: 0	07/02/07 A	analyzed: 07	/06/07			
Total Suspended Solids	176	1.0	mg/l		180			2 25	30	
Duplicate (AG70215-DUP2)	Sour	ce: 07F088	2-05	Prepared: 0	7/02/07 A	nalyzed: 07	/06/07			
Total Suspended Solids	56,1	1.0	mg/l	,	54	*		3 81	30	
Patch AG70327 - General Preparation										
Blank (AG70327-BLK1)				Prepared: (7/03/07 A	nalyzed: 07	/05/07			
Oil & Grease (HEM)	ND	5.0	mg/l							
LCS (AG70327-BS1)				Prepared: ()7/03/07 A	nalyzed: 07	/05/07			
bil & Grease (HEM)	18.4	5.0	mg/l	20.0		92.0	78-114			
LCS Dup (AG70327-BSD1)				Prepared: ()7/03/07 A	nalyzed: 07	/05/07		•	
il & Grease (HEM)	18.6	5.0	mg/l	20.0		93.0	78-114	1.08	18	
atch AG70804 - General Preparation										
Blank (AG70804-BLK1)				Prepared: ()6/29/07 A	analyzed: 07	/04/07			
Biochemical Oxygen Demand	ND	5.0	mg/l							
Blank (AG70804-BLK2)				Prepared: ()6/29/07 A	analyzed 07	//04/07			
diochemical Oxygen Demand	ND	5.0	mg/l							

he results in this report apply to the samples analyzed in accordance with the chain f custody document. This analytical report must be reproduced in its entirety.

Bruce Gove Laboratory Director

208 Mason Street, Ukiah, California 95482

e-mail clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 5

Entech Analytical Labs, Inc.

3334 Victor Court

Santa Clara, CA 95054

Attn: Simon Hague

Report Date: 07/10/07 15:09

56143 Project No:

Project ID:

Levin Richmond Terminal

brder Number 7F0998

Receipt Date/Time 06/29/2007 16:30

Client Code **ENTECH**

Client PO/Reference

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
			Prepared: (06/29/07 A	nalyzed: 07	/04/07			
188	50	mg/l	200		94.0	80-120	*****		•
			Prepared: (06/29/07 A	nalyzed: 07	/04/07			
182	50	mg/l	200		91.0	80-120	3.24	20	
	188	188 50	188 50 mg/l	Result PQL Units Level Prepared: 0 188 5 0 mg/l 200 Prepared: 0	Result PQL Units Level Result Prepared: 06/29/07 Ar 188 5 0 mg/l 200 Prepared: 06/29/07 Ar	Result PQL Units Level Result %REC 188 5 0 mg/l 200 94.0 Prepared: 06/29/07 Analyzed: 07	Result PQL Units Level Result %REC Limits Prepared: 06/29/07 Analyzed: 07/04/07 188 5 0 mg/l 200 94.0 80-120 Prepared: 06/29/07 Analyzed: 07/04/07	Result PQL Units Level Result %REC Limits RPD 188 5 0 mg/l 200 94.0 80-120 Prepared: 06/29/07 Analyzed: 07/04/07	Result PQL Units Level Result %REC Limits RPD Limit Prepared: 06/29/07 Analyzed: 07/04/07 188 5 0 mg/l 200 94.0 80-120 Prepared: 06/29/07 Analyzed: 07/04/07

ie results in this report apply to the samples analyzed in accordance with the chain f custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason Street, Ukiah. California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 5 of 5

Entech Analytical Labs, Inc.

3334 Victor Court

Santa Clara, CA 95054

Attn: Simon Hague

Report Date: 07/10/07 15:09

56143 Project No:

Levin Richmond Terminal Project ID:

Order Number 07F0998

Receipt Date/Time 06/29/2007 16:30

Client Code ENTECH

Client PO/Reference

Notes and Definitions

Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit

Not Reported

dry Sample results reported on a dry weight basis

Relative Percent Difference **Practical Quantitation Limit**

3334 Victor Court, Santa Clara, CA 95054

(408) 588-0200

FAX (408) 588-0201

Entech ID and PO#: 56143

Subcontract Chain of Custody

Subcontract Lab:

Alpha

Date Sent: 6/29/07

Date Due: 7/06/07

7/06/07

Project Name: Levin Richmond Terminal Project Location: 402 Wright, Richmond, CA

07F0998-01

Entech LabNumber	Customer Sample Name/Field Point ID	Matrix Method	Collect Date	Collect Time
56143-006	LRTO SW3-SW7 Compos	Liquid Oil & Grease By 1664 - Alpha	6/28/2007	7:00
56143-006	LRTO SW3-SW7 Compos	Liquid BOD (Report MDL, PQL & "I" Flag) - Alpha	6/28/2007	7:00
56143-006	LRTO SW3-SW7 Compos	Liquid TSS (Report MDL, PQL & "J" Flag) - Alpha	6/28/2007	7:00

Comments:

Report MDL, PQL, "J" Flag for BOD and TSS

BOD- 0.6 ppg] RL's request

	\	<u> </u>		
Relinquished By:	1	Received By:	Date:	Time:
b	Julia .	KK	06/29/07	11:14
Relinquished By		Received By:	Date;	Time:
Till		Bob Schult	6-19-08	1305
Relinquished By:	1630	Received By:	Date: (. 7 / 4)	Time: // .30
But Leku	De 6-29-07	7 My Mus	10 4.01	16170

Send the Report to: DATA@ENTECHLABS.COM

Allen SIDBS.				מ בנו	٠.	Purch	se Orde		16933				linusico to: (if Different)													
COMPANY Name	404 767 9729				Projec	roject No. Alane						Сепри	Company:													
illing Address	Anh Aire	Emel Add	Thinn	i inte	<u> </u>	V.V.		,	7	<i>i</i> . •.	2		Blang	Address	et (HT CHI	ferent)					···	·			·. ·	
398 UII		State	Zip Code:	wyers.		Protec	Local	014.7°	न्दे प	Jeig	nt z	fre	aty:									:	States	Zie:		
SAN WOSE, A C			Port Toron Around Time							P	<u> </u>	700	V	7	,	7	7	7	728	7	7-	7	'}_	15	7	
TL 6923 EDF Globel ID: D 56\43			me Day				Appl	Circle licable			8	(%)				//		2/	(8)	/ /	/ /	/ /	/ /	[N /		
				0 1 06 0 3 0a 0 6 0a ay	ý.	P	H SH								/ \$					/,	/	/				
Sampler To Sample Information						itelners					Y	1/6								/	/				•	
Client ID	Field Point	Date	Time	Entech Lab. No.	Metrix	No of Co	100			S/A							》	3/3			$^{\prime}/$			Remarks Instructio		
RTO 5W3-5	WT COME	6638	0900	000	HD.				X	X						X	X	X				区	LRTE	<i>50</i> 3	-64	
250 513	Deliserete			601				Ŀ			M		·											Cory		
RTO SWY	to comp	11_	<u> </u>	002	Ш					<u> </u>	W.												Vin.	field	501	
RTO SWS	with	 		003	<u> </u>			·		<u> </u>	LĂ.	<u> </u>														
RTO SWA	above	Ц.		EXH.							$ \!$	ļ						L					<u> </u>	SWY	BU	
RTO SW7	Surples	LV	<u> </u>	0:05	W.		1					<u>. </u>		<u></u>	<u> </u>			<u>.</u>	<u> </u>	بنا		1	مسح	<u> </u>	7	
	<u> </u>						٠,٠٠		ــــــــــــــــــــــــــــــــــــــ		<u>:</u>			<u> </u>										1 10		
		<u> </u>	-		<u> </u>				٠.,								٠		·			Ŀ		e con		
·····		ļ																						lab W		
		<u> </u>	 	<u> </u>	<u> </u>		ļ		<u> </u>													ļ		<u> 3 –5</u>		
······································		}		<u> </u>	<u> </u>	<u> </u>						ļ	1					-				-4		me S		
africational by	Florished by:	1	Date;	Time;	<u> </u>	164	المالة					<u> </u>		<u> </u>			لبِا	لــا					TOY	anal	4-1	
Redirectional by: Received by			6/28/67	140 Tine:	52	Lab 1	/SC:	(7	a	50m 50mi 90	- 6	7100	HNG N.M.	, 劉		1 c/f			(Ha th (H	1804 KL			٠.		ı	
stropished by:	Received by:	Manada	6/28/0	Time:	<i>ما</i> د	Mete	ls: g	盔		e, Bo, E	6, 8, C		Cr, Co(9	A LL	Mg, M RCRA-	n, Hg, I -8	No (NE)		12, Na, PPM-1		Sn, Ti		CAM-17		
ab Use: Samples: Icea Appropriate Con Labels match Co	tainers/Preservat			_	Cus	tody :	Seuls?	od: _	in Circ	?ch	cou				y N's				 _				····			

APPENDIX C

BUSTER BUILDING, GENERAL CONTRACTOR CAP INSPECTION, JUNE 29, 2007

BUSTER BUILDING, License No. 513203 C8

298 Cragmont, San Jose, California 95127 Phone: (408) 251-5446 Fax: (408) 251-3158 busterbn@pacbell.com

June 29, 2007

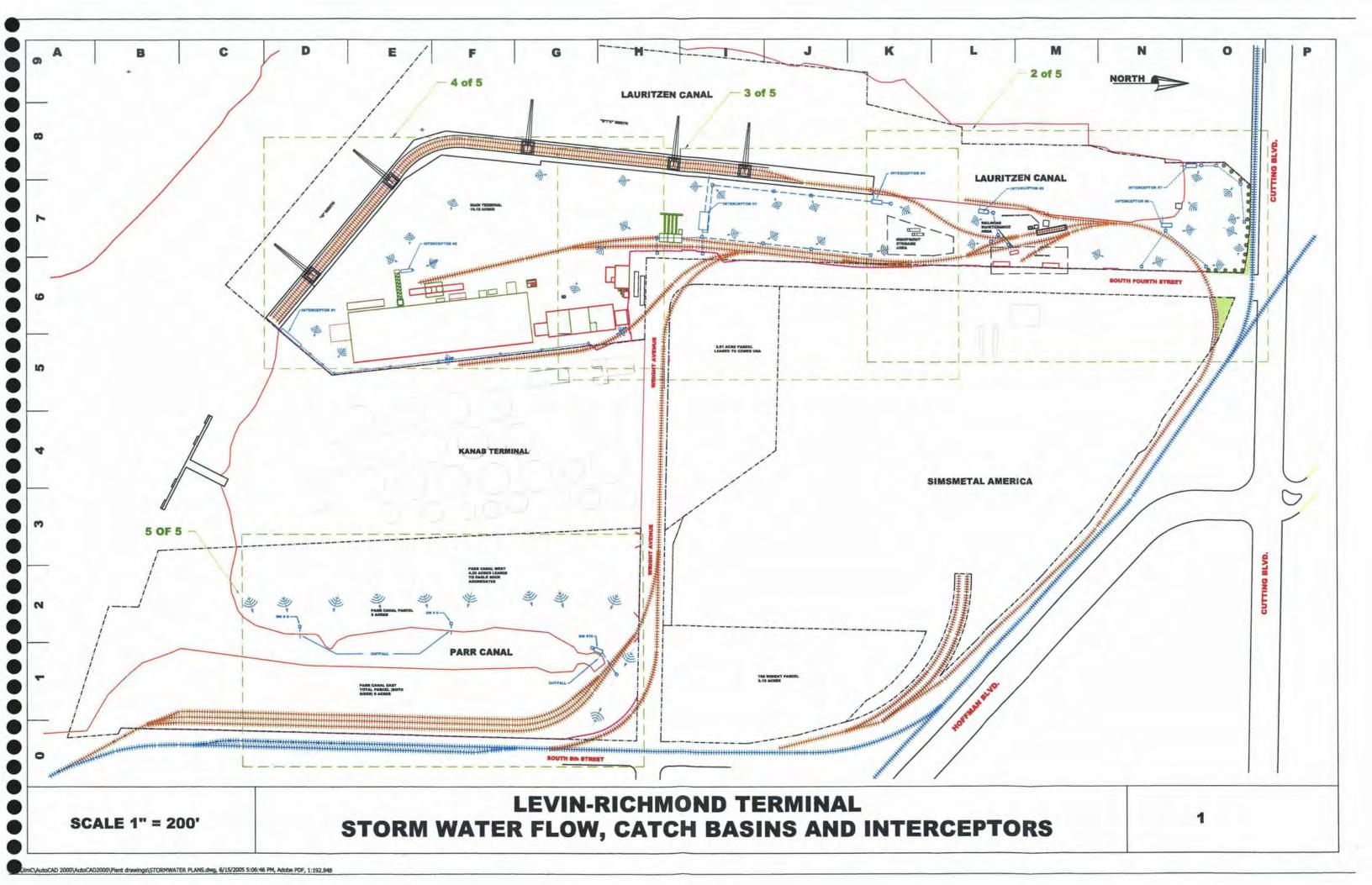
Environmental Technical Services 1548 Jacob Avenue San Jose, California 95118 Attn: Helen Mawhinney

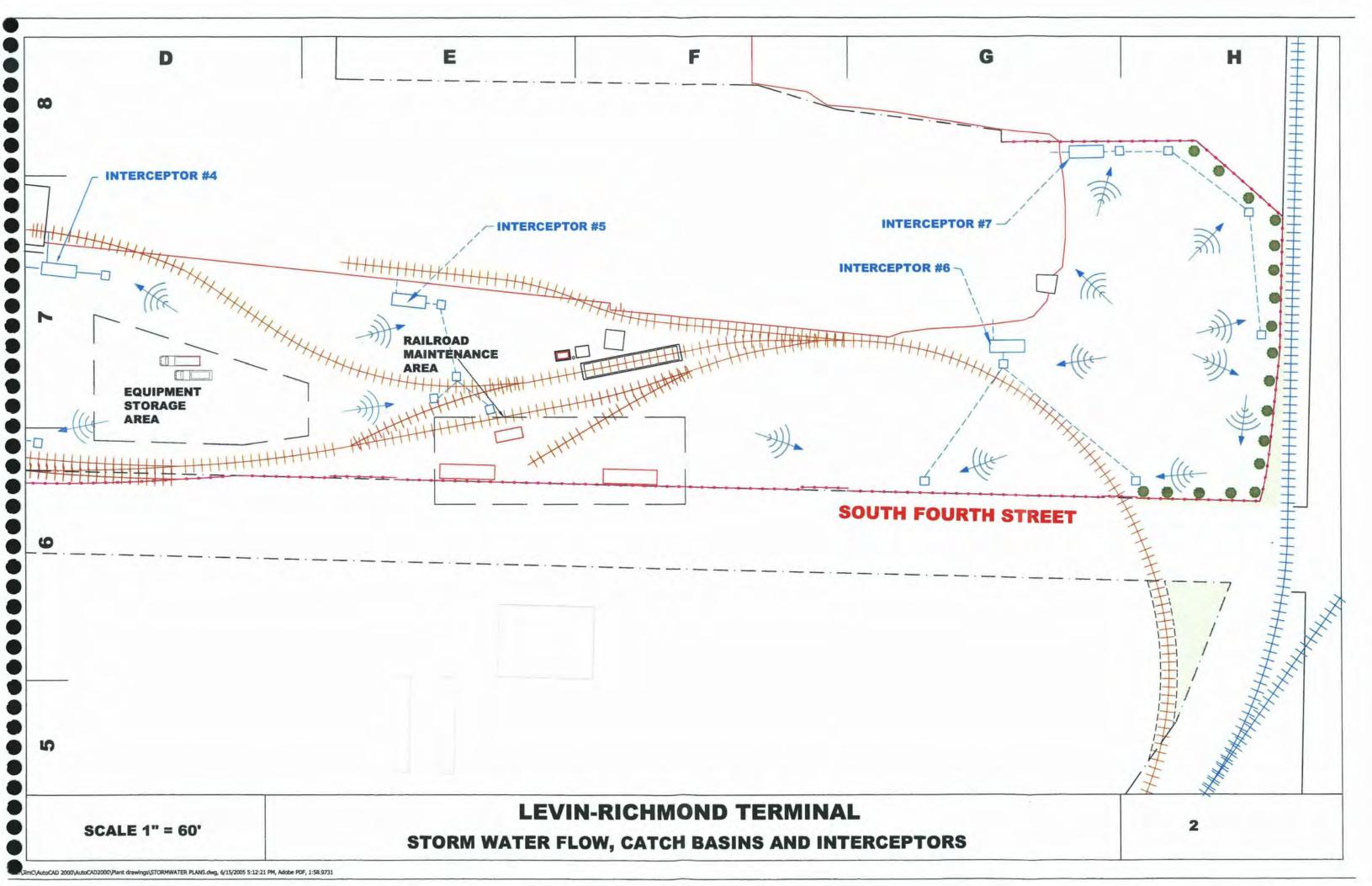
Senior Environmental Specialist

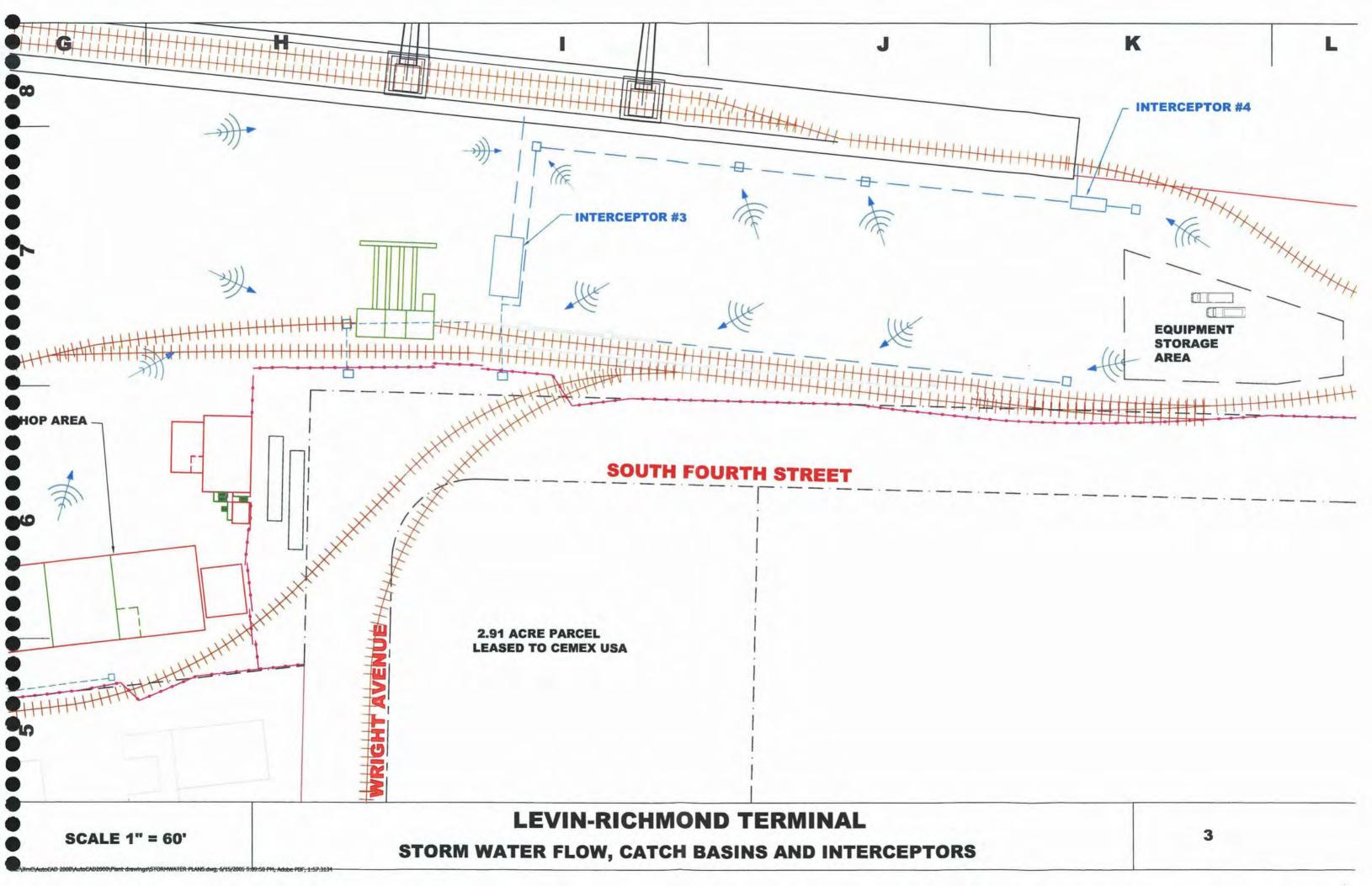
RE: Upland Cap Inspection, Former United Heckathorn Facility

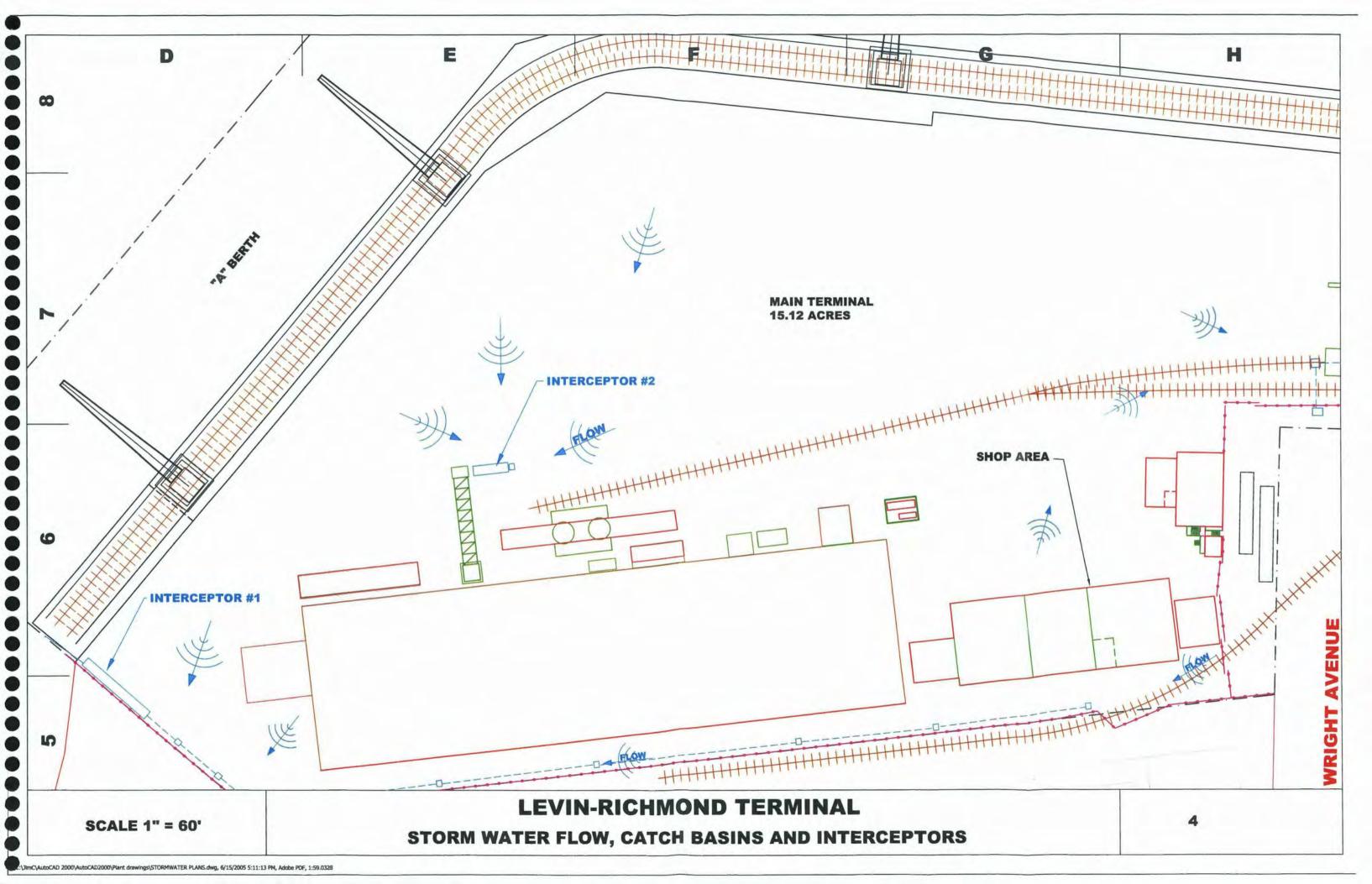
402 Wright Avenue, Richmond, California

The Upland Cap located at the Former United Heckathorn Facility, was inspected by John Peterson for Buster Building, General Contractor, License No. 513203 C8 (concrete) on June 28, 2007 and found to be intact and in good condition.


The cap's was found to be uncompromised and in good condition, with only occasional surface hairline cracks typical of those that develop subsequent to the curing of freshly poured concrete. The cracks are insignificant and not indicative of stress fractures. These surface cracks are too small to repair.


Sincerely,


John "Buster" Peterson General Contractor


APPENDIX D

FIGURES

APPENDIX A

TABLES

APPENDIX B

LABORATORY ANALYTICAL REPORTS & CHAIN OF CUSTODIES

November 15, 2006 February 27, 2007 June 28, 2007

APPENDIX C

BUSTER BUILDING, GENERAL CONTRACTOR CAP INSPECTION, JUNE 29, 2007

APPENDIX D

FIGURES